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Abstract

This paper presents a probabilistic analysis of a crossbar
switeh interconnection network. A crossbar switch can be
used to interconnect various combinations of computer sub-
systems. In the analysis below it is assumed, without loss of
generality, that the crossbar is being used to connect N pro-
cessors to M memories. The crossbar is termed an N-M
crossbar (read "N to M crossbar"). General expressions are
developed for a variety of performance figures for an N-M
crossbar including: the probability of a memory request being
accepted (i.e. not being blocked by another request to the
same memory), the expected bandwidth of the crossbar, and
the average wait time of a request before it is accepted.
Closed form solutions to these expressions are given for the
uniform request case and for the favorite memory case (i.e.
where processor i requests memory 1 with a higher probability
than others memories). The closed form solutions are tested
against simulations.

1. Introduction

This paper presents a probabilistic analysis of a
crossbar switch interconnection network. It is based on
work reported in [MaMB1bl. A crossbar switch can be
used to interconnect various combinations of computer
subsystems including processors to processors, proces-
sors to memories, processors to 1/0 devices, and
memories to 1/0 devices. In the analysis below it is
assumed, without loss of generality, that the crossbar is
being used to connect N processors to # memories. This
rultiprocessor system is depicted in Figure 1. The
crossbar is termed an N-M crossbar (read "N to M
crossbar”). In the operation of the system it is further
assumed that their is a system wide clock, and that read
and write memory requests made by the processors can
only ocecur in synchronism with this clock.

The designer of a multiprocessor system has a wide
variety of interconnection networks to choose from. An
obvious candidate for an interconnection network is a
shared bus--several processors and memories connected
to a shared time-multiplexed bus. However, a shared
bus only provides high speed interconnection if it is very
fast relative to processors and memories. If it is desired
to connect N processors to # memories a shared bus’
performance decays as N increases. To improve perfor-
mance over the shared bus a crossbar switch may be
used to establish multiple bus connections between pro-
cessors and memories. A crossbar allows any set of
simultaneous interconnections in which at most one
input bus is connected to each output bus. Unlike the
shared bus its performance does not decrease with
increase in N. However, the component complexity of
the crossbar grows as O{NM). For this reason past
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Figure 1. Multiprocessor System.

proposals for tightly coupling multiple processors to
multiple memories have steered away from crossbar
switches. In their place a whole range of ingenious net-
works have been proposed that include the following: the
networks of Clos and Benes [Clo53,Ben65], the Banyan
networks of Goke and Lipovski [GoL73], the Data Manipu-
lator network of Feng [Fen74], the Omega network of
Lawrie [Law75], the STARAN flip network of Batcher
[Bat78], the Indirect Binary n-cube of Pease [Pea?7], the
Generalized Cube of Siegel and Smith [SiS78, SiMB1b],
the Delta network of Patel [Pat79], the Baseline network
of Wu and Feng [WuFB0], and the Augmented Data Mani-
pulator network of Siegel and McMillen [SiMB1a]. These
networks have many of the connectivity properties of a
crossbar without the component complexity. For a good
survey of the state-of-the-art in networks see Siegel
[SieB0]. A unified theory developed by Lipovski and
Malek that characterizes the inter-relationship of many
of these networks will appear in [LiM]. With the excep-
tion of some forms of the of the Banyan network the
component complexity of these networks all grow as
O(NlogaN) rather than O(N?) (assuming N=HM).

In the context of VLSI technology it is no longer
clear that reduced component complexity is an advan-
tage within a single 1C. For example, preliminary lay-
outs for a Delta network and a bit-slice crossbar carried
out by us [MaMBla] suggest that the reduced complex-
ity networks do not appear to translate into more
efficient space utilization in an IC layout. The decreased
importance of component complexity or device count as



a measure of design efficiency in ICs has been discussed
by Thompson and Franklin [Tho80, FraB0] among others.
Furthermore, although the reduced complexity networks
preserve some of the connectivity properties of a
crossbar they do not preserve bandwidth [Pat?79]. For
these reasons we have decided to explore more fully the
design and analysis of crossbar switches for use as single
chip building blocks in interconnection networks. How-
ever, it is still assumed that if the size requirements of
an interconnection network exceed the size of the single
chip crossbar, the network will be constructed as an
"Nlog,N" type network since the reduced component
complexity argument holds at the IC package level.

Previous work that is relevant to this paper can be
found in [Rav?2, Str70, Bha?75, Pip75. BaS76, CKL77,
Hoo7?7, Rau?9, PatB1]. The analysis presented below is
an extension of this work. Analyses presented in the
above references assume that processor requests are
uniformly distributed among the memories. Our
analysis relaxes this condition. In particular, we allow
the possibility of a processor not making a memory
request during a system cycle?, and we allow the
requests to be non-uniformly distributed among the
memories. In the case of each processor having a favor-
ite memory, i.e., being more likely to request one partic-
ular memory than any other, a new closed form solution
for the probability of request acceptance is developed.
In contrast to some of the analyses presented in [BaS78,
Bha75, CKL77, Rau79] we have not attempted to model
dependencies between successive memory requests or
to model the effect of being allowed to queue memory
requests, although an expression for the expected wait
time of a memory request is developed in section 4.
Including dependencies or queues in the analysis results
in very complex models that, although more accurate,
can only be solved for cases where all processors make
uniform requests every system cycle (see [Rau79]).

2. Analysis of an N-M Crossbar

Assumptions: Consistent with the system behavior out-
lined in the Introduction it is assumed that events in the
system occur at discrete time intervals defined by the
system clock. The discrete time intervals are termed
system cycles. Memory requests made by the proces-
sors occur synchronously with the system clock and any
processor may make a memory request at the start of
any system cycle subject to the probability distributions
defined below. A memory can service one request per
system cycle.

Definition 1: Let R; be the event that processor i
requests any memory.

Definition. 2. Let S;; be the event that processor i
requests memory j.

Assumptions: Assume the request behavior of a proces-
sor is an independent process. Assume also that the
request behavior of each processor is independent of
that of any other processor. We shall term  these
assumptions the independent request property (IRP).

One consequence of the IRP is that our analysis does
not model resubmission of denied requests. In other
words if several processors request the same memory
those that do not get the memory (all but one) "loose”
their request, and in the next time period their requests
will be made without regard to this loss since the
request behavior of a processor is an independent

® See next section for a definition of this term.

312

process. In a realistic situation the request would most
likely be resubmitted. The effect of this shortceming of
the analysis is measured experimentally, and the results
are prescribed in a later section.

One other consequence of the IRP is that the follow-
ing holds:

.Prisab ﬁScd§ = H‘{Sab;PriScd; for all a #¢
Assumptions: Assume that it is possible to measure the
following two statistics empirically.

(1) The probability, r;, that processor i requests any
memory at the start of a system cycle,

(2) The probability, p;(j), that processor i requests
memory j given that it makes any request at all at
the start of a system cycle.

The values of 7; and the p;(j) for a particular processor i
will be termed the request distributions for that proces-
sor.

The statistic r; and the p;(j) may be estimated from
memory reference counts obtained from typical pro-
grams (see [BaS78, Hoo77]).

From definitions 1 and 2 and the above assumptions
it follows that:

Ty = PrifR] (1)
p:(7) = PriSy | Ry (2
From the definition of conditional probability we have:
Pr{Sy NE}
PriSy| R = “EriR] (PriRr;1>0)

However, from definitions 1 and 2 it follows that:
Sij NR; = Sy

(See event space diagrams in Figure 2.)

R, Bijx

By

Figure 2. Event Space Diagrams.




Therefore:
PriSyl = PriSy| R} PriR)
Using (1) and (2) this can be written:
P"fsu'; =1 () (3)
Definition 3: Let A; be the event that processor 4
requests memory j andis accepted.

Definition 4: Let By be the event that processor i and
k—1 others request memory j.

Assumption: If exactly k processors request memory j
assume that the one processor whose request is serviced

is selected from the set of &k with a probability of PE We

shall term this the unform selection rule (USR). In the
notation developed so far the USR can be expressed as
follows:

1
PriA;| Byl = %
From definitions 2 and 3 it follows that:
AiNSy = Ay

(See event space diagrams in Figure 2.)
Furthermore, from definitions 2 and 4 it follows that:

N
Sﬁ = U B,;jk
k=1

(See event space diagrams in Figure 2.)
Combining these two observations gives the following:

Ay = AiNSy = AgN

N

U By
k=1
Distributing gives:

N
Ay = kL=Jl Ay M Bige ] (4)

From definition 4 it follows that the events By are
mutually exclusive with respect to k, i.e. Bije, M Byj, = #

for all k #k; Therefore, the events |Ay\Biy | are
mutually exclusive with respect to k also. This fact
allows us to express the relationship between the proba-
bilities associated with the events in equation 4 as fol-
lows:

N

Prigil = zE PriA; M Byl (5)

=1
Using the deflnition of conditional probability again, we
have:

PriAg N\Bip 'l = PriA; | Bye} PriBys
Substituting this in 5 gives:

N
PriA;} = kZ PriA; |Bq'kl P"fBz‘jk’
=1
Applying the USR assumption to this gives:

N
Prigg} = 3 ¢ PriBus ®
Definition 5: Define a binary vector,
Wi = <wge(1),..., Wy (N)> to represent the request pat-
tern seen by memory j when processors i and k—1 oth-
ers request memory j. The elements of w, are defined
as follows:
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'wq,,(h) =1
iff processors h, i, and k ~2 others request memory j.
W(‘,k(h) =0

iff processor h makes no request or requests a memory
other than j, and processors i and k—1 others request
memory j.

There are (ﬁ,vill) distinct vectors w;; . When necessary

they will be distinguished by an additional subscript as
follows: '
L= 1(

From definition 5 it follows that:

Wi (1) = 1

N-1

Wijel k-1

N
2 wijkl(h') =k
h=1

and
fwym (h) = 1] = event S

(7

However, the converse of relation 7 does not necessarily
hold since the event that processor h requests memory
Jj says nothing about processor i requesting memory j
nor does it indicate how many processors request
memory j. :

Definition 8: Denote the occurrence of event S and its
non-occurrence by S! and S° respectively.

From definitions 5 and 6 and relation 7 we have:
N
r)
Wikl = S;:;W
h=1

Furthermore, the converse holds since the right hand
side completely specifies the request pattern seen by
memeory j. Therefore, we can write:

(8

N
W (h)
'ijkl <> m SMVH
h=1

Definition 7. Let Wj;,; be the event corresponding to the
request pattern wy,.
From relation 8 and definition 7 it follows that.:
N weh)
Wyr = M Sw™
h=1

.

Applying the IRP assumptions to this allows us to express
the relationship between the probabilities associated
with the events as follows:

N Wy, (B)
Pr{Wynl = I_IIP"iSth 3 (9)

From equation 3 and deflnition 6 it follows that:
PriS,,lj} = rppn(s)
and
Prisgi=1—-rmpn(j)

Substituting these results into equation 9 gives:

Prifgat = TTiramn ™1 - rapy ()]~ ®)

However, as noted earlier from definition 5 it follows
that:



Wi (1) = 1
Thus the above equation can be rewritten to give:
PriWynl =

repe(5) hn”l [rapa (TP 1 — 1, p, ()] ™ (10)

h#i

From definition 4, 5 and 7 it fellows that:
(N—l
k-1

U Wi (11)
t=1

qu =
(See event space diagrams in Figure 2.)

Furthermore, from definitions 5 and 7 it may be con-
cluded that events Wy, are mutually exclusive with
respect to I, ie. Wijkllm Wijklz =g for all {215, This
allows us to express the relationship between the proba-
bilities associated with the events in equation 11 as fol-

lows:
(¥

PriBgi= Y, Prilg) (12)
i=1
Substituting from equation 10 into 12 gives:
PriByl =
e (13)
, - h - {13
roi(i) % H Taa (TP 1 —rpy ()] ™)
=1 h=1

h#i

Substituting equation 13 into equation 6 gives us the fol-
lowing expression for the probability of processor i suc-
cessfully requesting memory j:

.o )
"'iPi(J)L %
k=1

k
12 ﬁ [rapn ()™ 17, (j)]‘—wmu('lff)

1|>|

From the point of view of individual processors an
interesting quantity is the probability of processor i suc-
cessfully requesting memory j once i has requested j,
i.e. Pridy|S5;. This gives a measure of a request not
being blocked by a conflict. To obtain Pr{Ay | Syj we
need to modify equation 14 slightly. This can be done in
a straightforward manner as follows. Above it was
observed that definitions 2 and 3 lead to:

AiNSy = 4y

Combining this with the definition of conditional proba-
bility gives:

Pridy NSy
Prid; |5y} = -

_ Prisg)
PriSy}

PriSy}

Substituting for Pr{Sy} from equation 3 and for Pr{4;}
from equation 14 gives :

Pronls ;=
(¥ w

EZ ,.H rapn I L mpy o (19

R‘I»—-

In general, it is desirable that an interconnection
network provide as many simultaneous channels as
needed from its N inputs to its # outputs. In the case of
an N-M crossbar the number of simultaneous channels
needed is given by:
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A N
Req[BW]2 Y~
i=1

(18)

The left hand side reads '"requested bandwidth”. It is
measured in "channels”, however, if the data rate per
channel can be expressed in Hertz then it is possible to
represent Feq[BW] in Hertz; units more commonly used
to measure bandwidth. Two other bandwidth measures
are useful for characterizing an N-M crossbar. They are
defined as follows:

A N M
E[BW]Z Y Y Prisyl
i=1j=1

(17

Moz [BW] B min (N 1) (18)
The first of these is just the expected bandwidth, i.e. the
expected number of channels in use between the N pro-
cessors and the ¥ memories. The second definition is a
measure of the maximum number of channels that can
exist between the processors and memories if request
conflicts never occur. It can be seen that Maz|[BW]
depends only on the structure of the N-M crossbar,
whereas Feg[BW] and E[B¥] are also dependent on the
request distributions that define each processor's
request behavior (i.e. r; and p;(j) ).

Using the definitions given in equations 18, 17, and
18 we can define two figures of merit for an N-M crossbar
operating under a particular set of request distributions

as follows:
Eé E[{BW
= Reg[BW]

A E[BW]

= Maz[BW]
Where E is a measure of the effectiveness of the crossbar
in fulfilling the demands of the particular set of request
distributions, and U is a measure of the utilizalion of
the crossbar given the particular set of request distribu-
tions. In general, E and U are both functions of N, M,
and p;(j) for all i and j. Also, 0<F<1 and 0sU<]1.

(19)

(20)

3. Closed Form Solutions

For certain functional forms for r; and p;(j) it is
possible to derive closed form expressions for equation
14, and as a consequence equations 15 through 20 too.
In this section we shall illustrate this possibility with
several examples.

3.1. Uniform Request Distributions
In this case:

let =T for all4 and j

and p;(j)=-=  foralli,
Then equation 14 simplifies to the following:
Pr Ayl
r & l(ﬁ:)N r T *) T l-ug (r) (21)
= — = —_— ikl —_ i 1
M 'kz=:1 k g E M [ !
h#i

Recall that for all values of I exactly & elements of Wy,
are 1 {k—1 elements if the h=i case is omitted), and
N -k elements are 0. Therefore, equation 21 reduces to:



(&)

N-
N k-
1 T 7
Pr X = = T ke 1 N -k
M= Ly & (51051
Since ! is no longer a parameter of any of the terms in

the scope of the rightmost summation, equation 22
reduces to:

ST L (N-IY e TN
PrSAqi—Mk)::]lk (k-l)[M N M]N *
This can be written as:
priggi= 5 8 (DG PU-2 P+ @)

Recalling the binomial expansion of | + (1—% Y we

.
can rewrite 23 as follows: u
Priagl= & (1= (1-F ] (24)

Also:
Prisg | Sy} = 2 (1-(1-Z)¥] (25)

Equations 18 through 18 simplify to:

Req[BW]=1N
E[BW] = M{1- (1~ 5 V] (26)
Moz [BW] = min(N M)
Therefore equations 19 and 20 simplify to:
B=2p--T )
(27)

U = Maz{{1- (1—— M1, [1— (-5 )N]i

Further simplifying assumptions lead to even more con-
cise closed forms as follows:

N
let a = 7]
Then equation 25 has a limiting form as follows:

Prify | Sy = - [1-(1- )”]
If N and M grow large this last equation has a limiting
form as follows:

A _raywi- 1 ry_,-ra
lim - (1-0-ZE W= L 1ere]  (ze)

Most of the equations 24 through 2B have previously
been derived in [Str70, CKL77, BrD77] for the case
7=1.0, and in [Hoo77, PatB1] for the case r=1.0.

Figures 3 through 5 illustrate some of the results
obtained by assuming uniform request distributions. Fig-
ure 3 shows Pr{4; | Sy} and E[BW] for a 4-M crossbar
as a function of M when r=0.1 (i.e. a 10% duty cycle for
memory requests). As one would expect the probability
of a submitted request being accepted approaches 1 as
M increases, since increasing # while keeping N con-
stant reduces the likelihood of requests conflicting for
memories. For the same reason the expected bandwidth
in use, E[BW] approaches the expected bandwidth
requested, Req[BW]. (Recall that Req[BW]=rN=0.4.)
Figure 4 again shows Pr{dy | Sy} and E[BW] for a 4-M
crossbar as a function of M, however, the request has
been increased to the point where every processors
makes a request at every memory cycle, i.e. r=1.0.
Again Pri{A; | Sy} asymptotically approaches 1 with
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(22)
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increase in M, but at a slower rate than before. In addi-
tion, E[BW] approaches Req[BW] (=4), however, since



E[BW]-

r=1.0, E[BW] also approaches the structural limit of the
crossbar, namely Max[BW] (=4). Figure 5 illustrate how
E[BW] varies with r for a 4-4 crossbar, a 16-18 crossbar,
and a 64-64 crossbar. Notice that in all three cases 65-
707% of the maximum number of channels available are
being used when r=1.0.

3.2. Favorite Memory Distributions
In this case assume that processor i is more likely

to request memory i than other memories. To model
this case let:
Ty =T for all i
pi(i) = p1 for all 4
iy 1-p .
i) = 425 for all i #j
1 For brev-

For i to be the favorite we require that P>'ﬁ'

ity and to simplify the analysis let N=M. The cases
N>M and N<M have closed forms that can be obtained
using a straightforward extension of the analysis
presented below. In deriving an expression for
Pr{A; | Sy} two cases arise: .

Case 1:

i=j
Equation 15 simplifies to the following:

N-1
k-1
Pridg | Sqj= 3, %( w (TR ey TUP)
k=1 t=1
For convenience let:
r{l-p) =t
M-1
Then:

N
1

2: =

Pl

=1k

Prifq | Sul (ivill)t""‘(l—t)”"‘

Recalling the binomial expansion of [t+(1—-£)¥], allows

SOt
40.71
64x64 System
30. 4
|
|
20.+ /
i /
10-_5_ /// 16x16 System
; /
; / 4x4 System
C. %/ : + + + + —
0.0 0.2 0.4 0.8 0.8 1.0
R
Figure 5.

us to write:
Pridg | S = 37 [1-(1-)"]

As would be expected the expression on the right hand
side of equation 29 reaches a maximum as p-1. Indeed,
using I'Hopital's rule it can be shown that:

lim Prid; | Sgl =1
p-l

(R9)

Case 2: i#j

In this case the set of possible request patterns seen by
memory j partition into two mutually exclusive subsets.
These subsets are distinguished by whether or not each
of their patterns include a request from processor j (a
favorite request). Let {wy.] be the set of possible
request patterns where * indicates that the subscript in
that position ranges over its allowed values. Then the
set of possible request patterns that each include a
request from processor j is given by:

o = Wyee | Wy (9)=11

And the set of possible request patterns none of which
include a request from processor j is given by:

g= f'ﬁn | 'ﬁkl(j)zn !
Examination of sets o and § reveals that:

la| = (1]:/_—22 2<k<N (30)
and
18] = (1,3:12 1<k<N (81)

To see this, notice that for set a processors i and j
request memory j leaving k —2 other processors out of a
total of N—2 as possible requestors, Also, notice that for
set 8 processor ¢ requests memory j leaving k —1 other
processors out of a total of N—2 as possible requestors.
The total of N -2 is obtained by noting that for both sets
o and 8 the requests from processors ¢ and j are fixed.

An event corresponding to any w;, £ a occurs with
the following probability:

rpt* i1t [V (32)

request pattern from 8 .
does not include request from jJ

T
i
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equest pattern from a
ncludes request from j

Figure 6. Examples of Request Patterns.




since processor j requests its favorite memory, j, with
probability rp; k—1 other processors (including i) make
non-favorite requests to memory j with probability £*!;
and the N-—-k remaining processors do not request
mermory j with probability [1—t]¥ %,

Similarly, an event corresponding to any wy £ f#
occurs with probability:

(1—rp)te(1-t)N—*-1 (33)
Since processor j does not request memory j with pro-
bability (1-rp); k other processors (including i) make
non-favorite requests to j with probability £*; and the
N~k ~1 remaining processors do not request memeory j
with probability (1—¢)V-*%-1,

Using the results of equations 30, 31, 32, 33,
together with the fact that in the case we are consider-
ing Pri{S;}=m7p(j) =t, allows us to simplify equation
15 to the following:

Priag | Sg3 = 3 1 (F28) 21—+

E
N
2

k=1

(34)

The summation over k& splits into two parts correspond-
ing to the mutually exclusive events associated with sets
a and f.

Equation 34 can be reduced to a closed form using
some simple algebraic identities. The steps involved are

outlined below:
(FB)-(FDH-(&=

This equation holds for all integer values of k£ provided
we adopt the convention that the binomial coefficient

(i\/’)___o if k<D or if k>N (see Knuth p.53 [Knu8B]).
Equation 35 allows us to rewrite equation 34 as follows:

N -
Prig; | Sl = kzz% (Ilg_%)mt"‘z(l—t)]v""

Recall (35)

Further manipulation of the binomial coeflficients gives:

Pridg | Syl = L ﬁ (Jlg)tk(l‘t)jv_k

Nt?
- N- -
~fiene L (E e aore

Recalling the binomial expansion of [t +(1—)]¥ enables
us to arrive at the following closed form:

Pridg | Sy} = <55 [1- (1=6)M - NE(1-6)V7]
- (N—-ll—)iz (1= (1=£)N 1= (N =1)t (1=t ¥ 2]
+ BB [1- (1))

canceling terms reduces this to:
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Pridg | Sg3 = <& [1- (1-t)"]

+ o (1 (1]

Together equations 29 and 36 define Pr{4;; | Sy for
all values of i and j in the case where processor i
requests memory i as a favorite memory. Recall that for

memory i to be a favorite p>i , and that
lirrlx Pri{Ay; | Syl = 1. In addition, it can be shown, using

'Hopital's rule with equation 38, that
1in} Prid; | Sy} = 0fori#j. This suggests that in the
p»

case of favorite memories the USR be abandoned and
the requests from non-favorite processors be given
higher priority than those from the favorite processor.

Furthermore, it can be shown that:
E[BW \tavorite >E[ BW lunisorm - Finally, in the limiting case
of p=1 it can be shown that: E[BW] euerite =min (N, M).
This agrees with our definition of Maz [(BW ] (see equation
15), which is consistent because in the case of p=1 all
requests are exclusively between processors and their
favorite memories, i.e, no conflicts occur.

(36)

4. Simulation Results

Simulations were run in an effort to compare the
analytical results with a more realistic system opera-
tion. It was found that the IRP assumptions, although not
realistic, did not introduce significant differences,

The simulator is designed to model a system where
processors emit requests according to their respective
request distributions. Furthermore, once requests are
emitted they must wait for a connection. That is, if pro-
cessor i emits a request for memory j and it is not
accepted the request is resubmitted on every succeed-
ing cycle until the connection is granted. Each memory
has associated with it N request fields where processors
store requests. During each cycle each memory selects
the requesting processor that gets the connection uni-
formly from all requests in its set of N request flelds
(empty request fields are ignored). The simulation
results are shown in the Appendix.

Definition B: Let Ny(i,j) be the number of cycles that
processor i spends waiting for a requested connection to
memory j.

Definition 9: Let Ng(i,j) be the number of cycles that
processor i requests or uses memory j (i.e. it is the
number of cycles during which processor i references
memory j).

Definition 10: Let #F(i,7) be the waiting fraction for pro-
cessor i requesting memory j. That is, it is the fraction
of cycles that processor i spends waiting for memory 7,
relative to the number of requests processor i generates
for memory j.

Then, from definitions 8, 9, and 10 it follows that:
Ny(i,j)
WF(i,7) = =~
(w.9) Ng(i.3)
One would expect that:
WF(i.j) s 1 - Pridy | Syl

That is, the number of cycles spent waiting is approxi-
mately the probability of not having a request accepted,
multiplied by the number of references to that memory.



From simulation runs for many request distributions
this approximation has been found to hold within about
10%.

Now notice that if for example WF(i,j) = % then it

may be seen that the average waiting time is 2 while the
number of requests is 3. That is, for each request for
memory j, on the average processor i must wait for 2
cycles and then use the connection on the third.
Definition. 11: Let £[#(i,7)] be the average waiting time
of processor i for memory j. Then, from the above dis-
cussion it follows that:
ElwW (i )] . .

— = ~ —_ -

E[W(i,]')] 1 WF("-:J) 1 P"Mu l Sij;
So,

1 - Pridy | Syl
PriA; | Sy

From this simple approximate analysis the average wait-
ing time rnay be found. Note some special cases:

Pridy | Syl =

E[#(i.g)]~

2> E[w(ii)]=1

Prid; | Sy = > E[W(@E.j)]=2

(AT ST

The limiting behavior of the waiting time is:

1-L [1-e7m9)

. ra ™
lim E[W]= = -1
N [ ] 1 [1-8'—'“] {—gTa

™

Ifra =1, thenlim E[W]= ——
Now e-—1

Figure 7 shows plots for E[W(i,i)] and E[#(i.j)].
the average wait times in the favorite memory case. As
one would expect the wait time of a processor waiting for
its favorite memory decreases to zero as p »+1 (equation
29). However, the wait time of a processor waiting for a
non-favorite memory grows unboundedly as p-1 (equa-
tion 38). Nevertheless, the overall average wait time
experienced by a processors is lower in the favorite
memory case than in the uniform request case. This is
in contrast to the results suggested by the approximate
model describe in [SeD79] where the favorite memory of
a processor is allowed to migrate.

All simulations were run with lengths of 100,000 sys-
tem cycles the Appendix contains a tabular summary of
the simulation data. From earlier experiments it was
found that as r; decreases the runs become less stable
unless the number of simulation cycles is increased over
100,000. Thus r; = 0.1 is about the minimum value used
for our sirnulations.

<1

Examination off the simulation results shows that
for the most part E{BW] > E[BW]lg,. This effect was
previously noted in [CKL?77] for the case when r=1, and
is caused by the simulator resubmitting blocked
requests until they are finally accepted. As noted ear-
lier, resubmission of blocked requests is more realistic
than our model which operates under the IRP assump-
tions. Thus, we can consider our model as yielding
slightly optimistic results. Notice that the above
discrepancy essentially disappears when 7 becomes
small.

2

; 1Prz,«t..,- | SGIE[W(i.5)]
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Figure 7.

5. Conclusion

In conclusion, the analysis presented above allows
one to compute various performance figures for an N-M
crossbar. In particular, in the case of each processor
having a favorite memory, i.e., being more likely to
request one particular memory than any other, new
closed form solutions for the probability of request
acceptance and the associated wait times were
developed. The simulation results show that these per-
formance figures are a close approximation to the actual
behavior of the crossbar provided the request distribu-
tions are an accurate model of the request behavior of
the processors.
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7. Appendix
The tollowing is a summary of simulation data for several system sizes and request rates/distributions.

where,
UNIFORM-DISTRIBUTION-SIMULATIONS .
e —— N -'the number of processors
N | H r 1-pa | WF | E[W] | dbw1 | bw2 | bwl | E[BW]sim | E[BW] M - the number of memory banks
4| 4]10 | 318 | .34 463 | 2.62 | 2.62 | 2.617 2.619 273 T - the processor request rate
4| 4! 5 | vz |20 | 208|178 {178 177 1.78 1.66 pa - Prid; | Sy} . ,
| a . 037 | 035 038 o o FF - the simulation waiting fraction,
: . 2 . 4 4 40 40 -39 it is the average over three runs

8| Bj10 .34 38 523 | 4.95 | 4.95 | 4.94 4.95 5.25 bw1l - the simulation bandwidth, for the
8| 8] 05| .02 | .40 022 | 40| 40| .39 .40 .39 b zﬁrs}:1 run . bandwidth. f

w2 - the simulation bandwidth, for the
4 | 8| 1. 17 183 | . , . . . ’

1.0 1 18 208 | 3.27 | 3.26 | 3.28 3.26 8.31 second run
4| 8! 5 | .08 1 099 | 19 |18 |19 1.9 1.82 bdbw3 - the simulation bandwidth, for the
41810 | .08 | 009 | 3.62 | 3.83 | 5.63 3.63 3.84 third run
4 18] 5 | .05 |.048| .048| 163|103 1.83 1.83 191 E[BW] - the computed average bandwidth
E[BW }sim - the average simulation
8 1.0 .55 .59 1.22 3.26 | 328 | 3.28 3.28 3.8 bandwujth. it is the average
8| 4| 5 | 3¢ | .45 523 | 2.83 | 283 | 2.83 2.83 2.63 of bwl, bwg, bw3
E[BW] - the computed average waiting time
FAVORITE-MEMORY-DISTRIBUTION-SIMULATIONS-1

N| N |~ p pamaz | pamin | wfmin | wfmaz | bwl | bw2 | bw3 | E[BW] | E[BW]sim
4 |18 {10055 K:"] .71 .05 .30 3.87 | 3.67 | 3.67 | 3.73 3.87
4 | 18|05 055 .98 .85 .022 .15 1.7 | 198 | 1.96 | 1.93 1.96
4 |18 |01 055 .99 .07 .005 .037 40 | 40 | .40 .40 .40
4 |18 | 1.0 0.40 .98 .78 .060 235 364 | 3.84 { 3.85 3.68 3.64
4 | 186 |05 | 0.40 K: 14 .88 030 .12 1.95 | 1.88 | 1.98 1.92 1.96
4 11801 040 5 .88 .005 .025 .40 .40 40 .40 .40
4 16|10/ 088 .99 57 .018 .43 382 | 3.62 | 3.83 | 3.89 3.82
4 | 18|05 085 .99 .78 .008 .22 1.98 | 1.68 | 1.99 | 1.87 1.98
4 {18 |01 ] 085 K::] .98 017 .04 40 | .40 | 40 .40 A0

These simulations were run using request distributions in which each processor requests a favorite memory with pro-
bability "p'' and the remaining uniformly.

pamaz - PriAy | Sy} for the preferred memory, and any memory preferred by no processor
pemin - PriA; | Sy} tor any other memory

wfmin - WF, from the three simulations, for the preferred memory

wfmaz - WF, from the three simulations, for any other memory

FAVORITE-MEMORY-DISTRIBUTION-SIMULATIONS-IL
N|N| r p | pamaz | pamin | wfmin | wfmaz | dbwl | dbw2 | bw3 E[BW] | E[B¥]sim
8 4 | 1.0 .40 48 .44 55 .80 3.31 | 3.31 | 3.31 3.62 3.31
84|05} .40 .88 .85 42 .48 285 | 285 | 285 2.64 2.85
8 4 | 01 ] .40 .82 01, .09 .10 79 ] .79 .73 78
8 4 {10/ .85 51 .38 49 .84 3.83 | 3.83 | 3.83 3.83 3.83
8] 4|05 .85 74 .80 32 47 3.14 | 3.15 | 3.14 2.88 3.14
8|4 ]014 .8 .94 .90 08 .10 .80 .79 .79 75 79

Since this is an B-4 connector, request “compression” must take place. In these distributions, two processors prete_r a
given memory (with magnitude "p") and their remaining probability distribution is uniform over all other memories.
There are then three other pairs of processors in a similar situation. Thus each memory is preferred by two proces-
sors,

320



